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Vertical averaging of the three-dimensional incompressible Euler equations
leads to several reduced dimension models of flow over topography, including
the one-layer and two-layer classic shallow water equations, and the one-layer
and two-layer nonhydrostatic Green—Naghdi equations. These equations are
derived and their well-posedness is discussed. Several implicit and explicit
finite difference approximations of both the shallow water and Green—Naghdi
models are presented, but for Green—Naghdi these are obtained using auto-
matic code generation software. Numerical results are given in both well-
posed and ill-posed regimes and compared with computations obtained by
others. © 1997 Academic Press

1. INTRODUCTION

Vertically averaged models of incompressible flow have an obvious computational
advantage over the full three-dimensional Euler equations, provided that important
features of the flow are retained. Single layer models such as the hyperbolic shallow
water equations and the dispersive Green—Naghdi equations have been shown to
be at least qualitatively correct in many situations [1, 2].

The shallow water equations are derived by assuming the flow is hydrostatic, the
horizontal velocity is vertically independent, and the continuity equation holds in
the weak sense over the vertical range which, together with the vertical boundary
conditions, eliminates the vertical velocity.

Dispersive models can be obtained by making assumptions about the form of
the variation of velocity with respect to the vertical variable z, typically that the
velocity components are polynomials in z. With these assumptions the vertical
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velocity component can be expressed in terms of derivatives of the horizontal
velocity components. Then the vertical momentum equation can be integrated
vertically to obtain an expression for the pressure, this being an obvious extension
of the classic procedure of using Bernoulli’s Law to eliminate the pressure [3]. Then
the horizontal momentum equation is integrated with respect to z. The final result
is a system of third-order partial differential equations in two space variables and
time. This was done for a single layer in [4], taking the horizontal velocity component
to be independent of z and the vertical component linear in z. The resulting equa-
tions are a generalization of the Boussinesq equation. For a single layer with a flat
bottom the equations were found much earlier using the same procedure in [5].
For a variable bottom a very elegant form was found by Bazdenkov, Morozov, and
Pogutse (BMP) [6]; see also [7].

In these single layer models the density is assumed constant. It is natural to try
to obtain extensions in which the density is a piecewise constant function of z,
and then the velocity is a piecewise polynomial. Although the resulting multilayer
equations are quite complicated, obtaining them is straightforward. In this way we
obtain a generalization of the BMP form of the Green—Naghdi equations. Equations
for two-layer shallow water are well known and easily derived [8, 9].

Inviscid incompressible flow in two layers with a velocity jump at the interface
is an ill-posed initial value problem. More precisely, it is shown in [3, Section 232]
that small oscillations of the interface about a state of steady motion of two fluids
of unequal densities and unequal velocities are unstable at sufficiently high wave
numbers, at least in the case that the fluids have infinite depth. That is to say, the
amplitudes of such disturbances grow exponentially (both in time and in wave
number). It should be no surprise then that our vertically averaged two-layer models
are also basically ill-posed with respect to small disturbances. In fact, the two-layer
Green—Naghdi equations are unconditionally ill-posed for both the case of a free
and of a rigid top surface, while the two-layer shallow water equations are of mixed
type, that is, there are regions of state space for which the equations are hyperbolic
and regions for which they are ill-posed. Nevertheless, there is interest in multilayer
flows, for example in the theoretical development of [10], in the experiments re-
ported in [11], in the steady state results of [12], and in the time-dependent work
of [13].

However, there is a severe computational difficulty in that the classic stability
and convergence theory of Lax and Richtmyer [14] does not apply to ill-posed
initial value problems. One should not expect convergence of finite difference
schemes as the grid is refined. Nevertheless, some information can be obtained, as
in the two-phase flow example in [4]. Some ideas about computation in this case
are presented in [15], but a precise theory seems not to be available. Also, it
is shown in [16] that the addition of a fourth-order dissipation term regularizes
the problem.

Given that there is no theory about just what can be learned from ill-posed
models and, also, given that one does not want to simply give up and say such
models are useless, we present here selected examples from extensive computations
with several finite difference methods, explicit and implicit for shallow water and
implicit for Green—Naghdi. The shallow water schemes appear to be new; they are
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formed by global composition of Lax—Friedrichs, Lax—Wendroff, and Crank-
Nicolson methods. As a minimal attempt at validation of these shallow water
methods for two layers we show several single layer computations.

In order to obtain numerical results for both the single and double layer Green—
Naghdi models we rely heavily on automatic code generation.

2. MULTILAYER MODELS

Here we consider an n-layer model, the layers being indexed by i, with the density
in each layer taken as constant p;. The height of the bottom is

ho(x),
while the thickness of the ith layer is
h,-(x, [)

The index i = 1 refers to the bottom layer, i = n to the top layer.
Setting

Zo = ho,
the interface between the layers is at
Z; = Zi.1 Tl

The horizontal velocity u;(x, t) of the ith layer is assumed to be constant in each
layer. Vertical velocity is eliminated by vertical averaging.

2.1. Multilayer Green—Naghdi Equations

The multilayer generalization of Green—Naghdi equations is derived in Appendix
A. The multilayer system includes the mass conservation equations

dh; + hu,=0, i=1,..n, (1)

where d; is the total derivation
dif = fi + uif, )
and the momentum equations, which we write here with the fourth-order dissipation,

Pp.
(zi = zi1) divt; + (2i — 2i-1)8Zix — Air — Bizgye = —(2i — 2i-1) (7:)6 + Wixxxx>, (3)
where

A= (zi = 2 dild(zi — zi Ui — 3 dizin], 4)
B; = (z; — zi-1) di[3(z; — zi-1)uie — dizi-1), 5)
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and v = 0 is the dissipation coefficient. If not explicitly stated otherwise we consider
in the following the system without dissipation; i.e., v = 0.

The interfacial pressures strongly couple the equations together. For example, if
the top surface is free, #°, = 0, and

P+ pilgi(zi) — qi(zie1) + 8(zi — zim)] = Pias

or
P = Aﬁ;l pilai(z) — ai(zj-1) + &(z; = 2], ©

where ¢;(z) is given by (31) in Appendix A. If the top surface is held fixed we can
no longer explicitly eliminate the interfacial pressures.

Note that the second time derivatives which appear in (4) and (5) can be elimi-
nated by using (1), which we will do for the finite difference equations.

2.2. Single Layer Green—Naghdi
The single layer momentum equations are, after dropping subscripts,
(z1 — z0) du + (21 — 20)g21x — Ax — Bz, = 0, (7)
where
A= (z1— 20)2 d[5(z1 — zo)ux — %dZO]
and
B = (21 — 20) d[3(z1 — zo)ux — dzo).

2.3. Multilayer Shallow Water

Multilayer shallow water is obtained by setting the A’s, B’s, and ¢’s equal to zero
in (3) and (6) above, so that the equations are

1
diu; + 82p = — — Py,

together with
d,‘h[ + h,‘u,‘x = O, i= 1, ey N

If the top surface is free, then

Pi= > pa(z— zj-1).

j=it1
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As above, if the top surface is held fixed we can no longer explicitly eliminate
the interfacial pressures.

There is another form for these equations in terms of momenta, which we show
for n = 2, and a free surface. These are

(h1): + (hy), =0, ®)
(M), + (houy), = 0, )
(hyaay), + (hyud + 3gh?), + %gh@ + ghizo, = 0, (10)
1
and
(hous), + (hou3 + 3gh3), + ghohy, + ghyzo, = 0. (11)

The total momentum then satisfies

(prhiuy + pohattn), + (prhuui + pohous + 5gpohs + sgpihi + gpahihy),
+ g(hl + hZ)Z()x = O (12)

2.4. Passive Layer Solution

Having a solution (Z;, u) of a single layer (shallow water or Green—Naghdi)
system we ask if this might also be a solution (z1, z», Uy, u,) of corresponding two-
layer system with p; = p, so that the upper surface and velocities are the same
Z, = Zyi, u; = u, = u. In other words does there exist the interface z; so that (zy,
Z1, u, u) is the solution of the two-layer system.

For two-layer shallow water system we see that if p; = p,, uy = u, = u, and
hy + h, = H then we get from (8), (9), and (12) the single-layer shallow water
equations in inhomogeneous conservation form:

H, + (Hu), =0,
(Hu), + (Hu® + 3gH?), + gHz(, = 0.

Note that even with a flat bottom the individual momentum equations are not
in conservation form. Only the thicknesses and the total momentum are conserved.
There is an alternative formulation in conservation form, namely (12) and

( —wy), + 33 —u}), +g (1 - %) hy = 0. (13)
1

However, just because this happens to be in conservation form is no guarantee that
the implied shock jump conditions are physically correct. This, of course, is a
very well known situation even for completely hyperbolic systems such as the
compressible Euler equations in one dimension. In that case both energy and
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entropy are conserved for smooth solutions, but physics disallows entropy conserva-
tion in shocks.

It follows from the above that if p; = p, initially equal velocities will remain
equal, as long as there is a unique smooth solution.

For a two-layer Green—Naghdi system the situation is, however, different. If we
express from the momentum equations (3) with flat bottom, i.e. zo, = 0, the equation
for (u; — uy);, in which we substitute p; = p,, u; = u, = u and use mass equations
(1) for simplification, we obtain

Upex T Uxld — Ul = 0. (14)

Substituting the single-layer Green—Naghdi soliton solution (32) [5], described in
Appendix B, into this equation we get a nonzero function. Thus the passive layer
solution of the two-layer Green—Naghdi with p; = p,, u; = u, = u coinciding for
the upper surface and velocity with the solution of single-layer Green—Naghdi, as
it is for the shallow water equations, generally does not exist.

3. DISPERSION RELATIONS

The calculation of the dispersion relations for these systems and others is pre-
sented in detail in [16], but for completeness we repeat the basic idea here. All
the models are systems of partial differential equations in the (x, f) space. After
linearization and Fourier transformation with Fourier variables (w, k) corresponding
to (x, t), the characteristic polynomial of the linearized system P(A, k), where A =
w/k, is calculated.

As we are interested only in the limit |k| — o, which allows us to determine if
the system is ill-posed, in each coefficient of M we keep only the principal part,
that is, the terms with the highest degree in k, and get a new polynomial P;(A, k).
In all cases k can be factored out of the equation P;(A, k) = 0 so that the roots A;
of this equation do not depend on k. In such a case the original system is (linearly)
ill-posed iff there exists a root A; with nonzero imaginary part. Note that we cannot
say that the problem is well-posed if all roots A; are real, not even the linearized
problem, since that is not a sufficient condition that the differential operator gener-
ate a semi-group. While it seems very likely that the nonlinear problem is ill-posed
if the principal part of the linearized constant coefficient problem is ill-posed, we
do not know of any theorem to this effect.

All the steps of the outlined dispersion analysis have been implemented in the
computer algebra system Reduce [17], including the complete expansion of the
condensed form of the differential equations.

3.1. Shallow Water, Free Surface

The variable k factors out of the characteristic polynomial P(A), leaving

Pl()\) = ()\ + ul)z()\ + le)z - ghl(/\ + u2)2 - ghz()\ + u1)2 + g2h1h2(1 - Pz/Pl) (15)
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Without loss of generality we can assume that u; = 0. Further, we make substitu-
tions H; = gh;,u = u,, R = p,/p,. For the case u = 0 the odd powers of A disappear
and we have the polynomial

Pl()l) = )\4 - /\Z(Hl + Hz) + Hle(l - R)

This is quadratic in A% with roots

20> =H, + H, + V(H, + H,)* — 4H,H,(1 — R).

Then for R < 1 there are four distinct real A. Thus for R < 1 there exists € > 0
such that for |u, — u,] < & the problem is well-posed. For R > 1 and u; = u, the
problem is ill-posed.

The special case R = 1 can be treated analytically. In that case

0=1=a flul)z_ (A fitz)z' (16)
Differentiating with respect to A we find that
u _ <ﬂ>1/3
A+ u, H,) ~
and substituting this into (16) gives
(uy — wp)* = (H{” + H3?)?
and the problem is then ill-posed if
0 < (u; — wp)*> < (H® + HY?) . 17)

The case H; = H, = H can also be done analytically since then the characteristic
polynomial reduces to a quadratic, as observed in [8]. Namely, if

2[H(1 = VR < |uy — ws] < 2[H(1 + VR)]'"

the problem is ill-posed.

Using the quantifier elimination method of [18] one can find the condition on
the coefficients of the polynomial (15) which is equivalent to the statement that all
roots of this polynomial are real. The condition is too long to be presented here;
however, we use it in numerical codes for checking ill-posedness.

3.2. Shallow Water, Rigid Lid

The variable k factors out of the characteristic polynomial P(A) leaving a polyno-
mial quadratic in A, which has the discriminant
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D = —4hh, [(ul —u2)’ ~ 8o~ p2) (%Jr%ﬂ

For the problem to be ill-posed the discriminant has to be negative, which is the
case if

hy hz)
up — up)> > - <—+— ,
(11 2)>>g(p1 — p2) o
as found in [19].

3.3. Green—Naghdi, Rigid Lid

The dispersion analysis, after factoring out k, gives a polynomial P;(\) which is
quadratic in A. The discriminant of this polynomial is

D = —4(uy — u;)*hihopyps,

the same (except for a positive factor) as in Case 3, Section 3.4. D is negative so
that the problem is again unconditionally ill-posed, except in trivial cases.

In [16] it is shown that the two-layer Green—Naghdi rigid lid model with dissipa-
tion coefficient v > 0 is well-posed. Note, however, that the dissipation in this case
does not imply decaying Fourier components, but only the bounded ones, so the
dissipation regularizes this system boundedly.

3.4. Green—Naghdi, Free Surface

The variable k factors out of the characteristic polynomial P(A) leaving
Pi(A) = (A + u2)’Q(N),
where Q(A) is quadratic in A and its discriminant is
D = —48(u; — uy)’hihypip,.

As D is unconditionally negative, P(A) has roots with a nonzero imaginary part
and the problem is unconditionally ill-posed, except in trivial cases.

As the fourth-order dissipation regularizes the rigid lid model, one might expect
similar behavior also in the free surface case which is also a third-order system.
The first numerical computations have shown that the dissipation regularizes also
this model (see Section 5.7.2).

4. FINITE DIFFERENCE EQUATIONS

Our goal is to study finite difference methods for the ill-posed two-layer Green—
Naghdi equations and the mixed-type two-layer shallow water equations. In the
former there is no reason to expect discontinuities to develop, while just the opposite
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is true in the latter. A further serious difficulty for shallow water is that, not only
are the four two-layer shallow water equations not uniformly hyperbolic, they are
not in momentum conservation form; that is, the individual layer thicknesses and
total momentum are conserved, but the momenta of each layer are not. This means
that there are three shock jump conditions we can have confidence in, but the
fourth condition is not known. In fact one can doubt that there is a universally correct
fourth condition. We will see an effect of this in Section 5.4.1. Some interesting ideas
about this can be found in [20].

The effect of this nonconservation form is that we do not really know how to
write difference equations, except that we should honor the three existing conserva-
tion laws. The problem is that of representing terms like hih,,. We will simply
follow [8], using the arithmetic mean times the difference, which has the crucial
property that the difference analogue of the derivative of a product holds. It is also
true that the corresponding jump conditions are compatible with the single layer
jump conditions when the densities are equal and the velocities on each side of the
shock are equal.

Two-layer shallow water also differs from the usual hyperbolic system such as
gas dynamics in that even in a hyperbolic region of state space the wave speeds,
being the roots of a fourth degree polynomial, do not have a simple expression.
Together with the possibility that the roots are complex, this eliminates from consid-
eration those methods which use an eigenvector decomposition. This leaves us with
explicit schemes such as Lax—Friedrichs and Lax—Wendroff or implicit schemes
such as Crank—Nicolson. After considerable experimentation we have found that
combinations of these along with anti-diffusion and a filter give the best results.

4.1. First-Order Balance Laws

For vector v with N components the system of partial differential equations for
the multilayer shallow-water approximation has the form

v, +£.(v) + G(v)v, + g(v,x) = 0. (18)

In the following the index # corresponds to the time variable ¢ and the index j
to the space variable x.

4.1.1. Lax—Friedrichs with anti-diffusion. We have chosen to use the two-step
form of Lax—Friedrichs (LF) with anti-diffusion as proposed in [21].

+ l n n At n n
V7+11//22 = 5 (V/ + j+1) - m [f(VjH) - f(v/» )]

At 1 Ar (1
"5 © (5 (vj + Vﬁ’ﬂ)) Vi —vil—-> ¢ (5 (vj + V_?'+1),xf+1/2>
yotl = 1 (VIR + v Ry — At [f(vi2) — fviei2)]
] 5 (Va2 () 5 Ay HOV71/3 ()

At 1 At (1
5 Ax G 5 (VEE + Vi3 ) [vid? — w5 — 585 (VIS + VIS, x; ).
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The anti-diffusion correction which applies to all components v of v,

Vi =V — + -1,

is defined in terms of forward and backward differences,

di =vj — v, di =v;— v, (19)

o; = 3 max(0, min(d},, signd;, |d;'|/2,d}, signd})) sign d; .

Note that the anti-diffusion correction is applied only in regions where the compo-
nent v is monotone. It serves to cancel the diffusion introduced by the averaging
in LF, but it is limited so as to maintain positivity in the scalar case. It is well known
that this anti-diffusion counteracts the excessive spreading of shocks associated
with LF and that it can distort smooth waves. We found that by applying the anti-
diffusion every two to four time steps with a weight, instead of every step, we could
maintain steep shocks and also significantly reduce the distortions. We indicate
such a scheme as LFAD(W)n, meaning that the anti-diffusion is applied every nth
time step with the weight W. For the same scheme with full anti-diffusion, i.e. with
W = 1, we use the notation LFAD#n which is the same as LFAD(1)n.

4.1.2. A composite Lax—Wendroff Lax—Friedrichs method. The two-step (pre-
dictor—corrector) version of the Lax—Wendroff (LW) method without artificial
viscosity for the system (18) is given by

+ 1 n n At n n
VIR = 3 )+ ) = 5 e [E0) — B

At 1 At 1
- mG <§ (V,n + V,"ZH)) [V]"ﬂ - V;n] - ?g (5 (an + V;"l+1),xj+1/2>

At
Ax

n+1

vl =y — — [f(v7) — E(viH5)]

At 1 1
1172 +172 1172 1172 1172 1172
_BG E(Vﬁl/z + VR | [vESE — viEE] — Atg E(Vﬁl/z + V), X ).

Note that the two-step LW and LF are quite similar. They have the same first
half-step and they differ in the second correcting half-step. The LW scheme corrects
from the previous time level n while the LF scheme corrects from the time half-
level n + 3.

To remove the inevitable oscillations appearing close to shocks a filter has been
proposed in [22]. This filter should be applied to the characteristic variables. As
indicated above, we must avoid an eigenvector expansion and so we had to apply
the filter to the basic variables. We found that although it was very effective in
removing oscillations there were also large errors left after the shocks had passed.
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This led us to consider using Lax—Friedrichs as a form of filter by replacing every
nth LW step with a LF step, indicated as LWLFn. Although the scheme is first-
order accurate for any #, for n between two and four it resolves shocks much better
than LF alone and does not have the oscillations of LW alone, the reason being,
roughly, that the leading first-order error term is divided by n, and the diffusive
LF amplification factor is replaced by its nth root. We have been also experimenting
with combining LW and LF steps with anti-diffusion; however, this method is never
used in the test cases presented in this paper.

4.1.3. A composite Crank—Nicolson scheme. After spatial discretization the time-
centered Crank—Nicolson (CN) scheme has the form

vl = v+ 5 At [F(v*!) + F(v7)],

where the vector F dependson vatj,j+ 1,andj — 1.
This is solved by Newton’s method,

v = v2 4 3 A [F(vED) + J(vED) (v — v D) + F(v7)],

where J is the Jacobian matrix of F and v(® = v”.

Here we found that a combination of CN steps, LF steps, and the filter in [22]
was very effective. This is indicated as CNLFnFm, that is, every nth step CN is
replaced by LF, and the filter is applied every mth step.

The algebra involved in the derivation of the linearized scheme is quite tedious
and hand coding of Newton’s method while not difficult is error-prone. So the
discretization has been done by the computer algebra system Reduce [17] with the
package FIDE [23] and the code for solving the linear implicit scheme has been
automatically generated by the module Linband [24] which is designed for genera-
tion of code for solving linear systems with a band matrix. During the code genera-
tion the computer algebra program creates the numerical source code in Fortran
which solves the given implicit scheme. For the one-layer shallow water model
about 50% (i.e., about 8 kB or 250 lines) of the numerical code has been automati-
cally generated and for the two-layer shallow water model about 67% (i.e., about
25 kB or 720 lines) of the code has been generated automatically. The remainder
of the code involving such things as input—output operations or initial conditions
has been done manually.

For completeness we describe the filter which is the simplest one from [22]. It is
applied to every component v of v in each grid point in which v; is a local extremum,
that is when d;d; < 0, where d;, d; are differences (19). So if d;d; < 0 then v; is
corrected by

— 1 +
v =v; + gsignd;,
where

&; = min(min(|d;’|, |d7]), s max(|d; |, |d;)).
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Further, to retain conservation one of v; 1, v;;; must be corrected in the opposite
sense according to

v,=v,—6,-signdj*,

where J = j + 1 for |d][ > |d;| and J = j — 1 otherwise.

4.2. Green—Naghdi

4.2.1. One-layer Green—Naghdi. The single layer Green—Naghdi equations (1)
(with n = 1) and (7) contain mixed time-space derivatives and are most naturally
approximated by implicit schemes.

For the single layer Green—Naghdi we have used a backward Euler difference
scheme resulting in a system of nonlinear difference equations which is then solved
by Newton’s method. We call this scheme backward Euler Newton (BEN) scheme.
The scheme construction proceeds in the following way. First, all derivatives of
products are expanded and all the time derivatives are replaced by

vn+1 — "

At

v, =

(20)

All remaining terms, i.e. terms which are not inside a time derivative, are discretized
at the implicit time level n + 1. So we are using a fully implicit discretization. The
space derivatives are approximated by

—Ujs2 + 8Uj+1 - 8l)j_1 + Vj-2

Uy =

12 Ax ’
. ) + 16Uj+1 - 300/ + 16Uj_] —Uj2
P ™ 12 A% ’
eay
v . Ujr2 — 2U/+] + 21)/;1 —Uj2
XXX 2 A3y P

» Ujr2 — 4U/'+1 + 6U/' - 4U]',1 + Ui
Uxxxx = A4X >

which are fourth-order approximations for v, , v, and a second-order approximation
for Uy yy, Urrxr (fourth-order derivative appears in the dissipation term of the two-
layer Green—Naghdi (3)). Such discretization defines the nonlinear finite difference
scheme. In most cases we found that a single iteration of Newton’s method was suffi-
cient.

The FIDE package, Reduce, and Linband were also used here. All the derivation,
including derivation of the one-layer Green—Naghdi system of PDEs and their full
discretization has been performed by a computer. The proposed space discreti-
zations have been also obtained by a computer. The final difference scheme is
checked for correctness by doing the truncation error analysis. Having derived the
final difference scheme, the Fortran code calculating the band matrix and calling
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the numerical solution routine, which occupies more than 84% of the whole code,
has been generated by a few lines (10 lines) of high level code. The full Fortran
source code implementing this solution procedure occupies about 90 kB (about
1600 lines), most of which has been generated completely automatically. To improve
the efficiency of the code and decrease the size of Fortran source code the finite
differences (21) for all quantities at the explicit and intermediate levels have been
stored in independent arrays and all the derivations of the difference scheme (after
expanding derivatives of products in the original PDEs) and code generation have
been done without expanding products of sums and/or differences.

4.2.2. Two-layer Green—Naghdi. The equations in (1), (3), using (4), (5), are
expanded so that there are no derivatives of products. The second time derivative
that appears, z1,, is eliminated using

A = — (ulhl)xr .

At first we tried the same approach, i.e. the backward Euler Newton scheme, as
described in the previous section for single-layer Green—Naghdi, here with w =
(z1, 22, U1, uy). However, this leads to an algorithm that produces over 550 kB
(more than 8000 lines) of automatically generated code. And, of course, being so
big, this code is too slow. The complexity of this algorithm is caused by the large
Jacobian of the two-layer Green—Naghdi equations. So for this case precise Newton
linearization is not practical and we have applied ad-hoc linearization where in the
discretization of products only some factors (usually one) of each product has been
kept on the implicit time level.

The first step, i.e. discretization of time derivatives, proceeds in the same manner
as for BEN by using (20). Now for the other terms which do not include the time
derivative we have to decide what will be taken explicit at time n and what will be
taken implicit at time » + 1. In those terms with no time derivative, if there is a
unique highest order spatial derivative, it is taken at time n + 1 and the other
factors at time n. The remaining terms are done with some splitting, for example,
a term of the form ab might be defined as (a"b"*! + a"*'b")/2.

The space discretization is defined again as for BEN by (21); however, the ad-
hoc linearization here guarantees that the resulting difference scheme is linear in
the implicit v**! terms.

Again we have used the computer algebra system Reduce with the package
FIDE and module Linband for discretization and code generation. For the ad-hoc
linearization more than 90% of the code, i.e. about 130 kB or 2500 lines, has been
generated automatically by computer. This code is about four times faster than the
BEN code.

For experimenting with difference schemes for two-layer Green—Naghdi the
usage of code generation facilities has been essential. It is hard to imagine that one
writes and debugs several thousands of source code lines just for testing a particular
difference scheme. One might think that hand coding would produce more efficient
code; however, efficiency was not our aim and we also believe that with the current
state of the art in compiler optimization the difference in speed between hand
written and generated code would not be high. Note that almost the only task of
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automatically generated code is to calculate the matrix and right-hand side of a
system of linear algebraic equations. Also the probability of bugs in generated code
is much less than in hand written code.

5. NUMERICAL RESULTS

Before proceeding to two-layer, possibly ill-posed models, one needs to have
robust numerical methods working well for similar well-posed one-layer models.
So for both cases of shallow water and Green—Naghdi models we start the presenta-
tion with comparisons of our one-layer codes with earlier results of others.

5.1. Initial and Boundary Conditions

The initial conditions for n-layer shallow water and Green—Naghdi equations for
the test problems treated in this section are for heights z;(x, f) and velocities
u;(x, f) given by

zi(x,0) =2z, w(x,0)=ul, i=1,..,n (22)

Note that the vertical averaging procedure remains valid only for positive thick-
nesses of each layer. So if we have a problem for which the bottom profile is higher
than the lowest layer, i.e. z0 < b., where b, is the height of bottom bump (see, e.g.,
Fig. 5), then we have to set up the initial conditions so that the thickness of the
lowest layer is greater than some small positive number; i.e., it is equal to this
number in the area where z{ < z¢(x). The same applies also to other layers if their
upper constant surface would be below the height of the bottom.

We solve these problems on the space interval x € (A, B), A < 0, B > 0. For
all problems we use free boundary conditions at both ends of the interval,

7oA, 1) =0, up(A,6)=0, zx(B,t)=0, u(B,t)=0, i=1,...,n. (23)

In the different problems we use three different bottom profiles. All profiles have
a bump with maximum height b. at x = 0. The profiles differ in the shape of the
bump. For shallow water problems we use the profile from [1, 8],

2
bc<1—x—2> for-a=x=a
zo(x) = a4 (24)

0 otherwise.

For comparison of one-layer Green—Naghdi with the steady solution of [25] we
use the profile

<1 +cos%> for2=x=2

2o(x) = b, (25)

S N

otherwise.
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For comparison of the Green—Naghdi codes with the results of [2] we take as
the profile

Zo(x) = ﬁ (26)

In all cases the normalization with the gravitational constant g = 1 is used. Since
¢ = 1 and in most cases z9) = 1, the velocity u9 coincides with the Froude number

F, = ub/Vgzl.

5.2. Adaptive Time Step

In all codes for one- and two-layer shallow water and Green—Naghdi models we
have used the following procedure for adaptive time step control. Before each time
step we have calculated the maximum ‘‘pseudo-eigenvalue”

/\max = max (ui(x) R hl(x))

i=1,...,n,x€(A,B)
over n layers and the current time step is then given by

Cmax
At = — Ax,

A'II]'AX

where Cp.y is the maximum Courant-Friedrichs—Levy (CFL) number which is used
as an input parameter.

This procedure is completely valid for the one-layer shallow water equations.
For the two-layer problems and for Green—Naghdi we are assuming that the gravity
wave speeds in each layer provide a reasonable limit on the time step.

5.3. One-Layer Shallow Water

As a preliminary to and a means of validating two-layer computations we have
done many runs, including convergence tests, for different one-layer shallow water
problems for different LFAD(W)n, LWLFn, CNLFnFm methods. In all shallow
water problems we have used the bottom profile (24) as used in [1, 8] with a = 2.

Figure 1 shows the comparison of results of LFAD2, LWLF2, and CNLF1F8
methods (the numerical results of these three methods differ only negligibly) with
analytical estimates from [1] for the problem with b. = 0.65, uy = 0.7 (which is the
case 1 of [2] which belongs to region IIb of [1]) at time ¢ = 20 which has a shock
running upstream, a shock running downstream, and a rarefaction wave running
downstream. We have used 2000 points on the interval x € (—40, 40) with C., =
0.7 for LF and LW time steps and Cy,,x = 2 for the CN time steps. The plots show
a good agreement of our three numerical methods with analytical estimates of the
speeds and heights of the shocks and the rarefaction wave.

As from the estimates we know only heights and speeds and not positions, we
have taken positions from numerical results at time ¢ = 10 and from these positions
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FIG. 1.

Comparison of heights of LFAD2, LWLF2, and CNLF1F8 methods (gave same results)
with analytical estimates for the problem with b, = 0.65, uy = 0.7.

and velocity estimates we have calculated estimated positions at time ¢ = 20 which
are plotted in the figure. As concerns the downstream propagating rarefaction wave,
we have analytical estimates for speeds of its right- and left-hand sides, but we do
not know its profile. So in the plots we have included the flat profile before and
after the rarefaction wave and a linear profile for the rarefaction wave. As the

right-hand side of the rarefaction wave we have taken the point of local minimum
from the numerical results.

5.4. Two-Layer Shallow Water

For two-layer shallow water problems we have used the same profile (24) with
a = 2 as for one-layer problems.

5.4.1. Comparison with one-layer shallow water with constant density. First we
compare the two-layer shallow water model with the same densities p; = p», i.e.
R =1, in both layers with the one-layer shallow water model. As has been shown
in Section 2.3 if the velocities of both layers remain the same, u; = u,, then the
two-layer model has to produce the same results as the one-layer model. Note,
however, that this two-layer shallow water model is ill-posed wherever there are
small nonzero velocity differences, as has been shown in Section 3.1; see (17).
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FIG. 2. Comparison of heights of two-layer (LFAD2, LWLF2, CNLF1F8 methods) and one-layer
shallow water models for the problem with b. = 0.2, uy = 1, R = 1 at times ¢t = 5, 10, 20. The bold
line distinguishes the well-posed (value 0) and ill-posed (value 0.1) regions.

We use here the initial conditions (22) with n = 2, the initial velocities u{ =

u3 = uy and the initial heights z9 = 1 and z{ = (1 + b.)/2.

In Fig. 2 we show the results of this comparison of two-layer and one-layer
shallow water models for the problem with b, = 0.2, uy = 1 (this corresponds to
case 3 from [2]) at times ¢ = 5, 10, 20. Both the two-layer and one-layer models
were solved by the methods LFAD2, LWLF2, and CNLF1F8 which gave results
with negligible differences. The figure shows good agreement for the upper surface
obtained by the one-layer and two-layer models. In this calculation we have used
1000 cells on the interval x € (=20, 20). The CFL number C,,.x was again 0.7 for
LF and LW time steps and 2 for CN time steps. In this problem there appear both
ill-posed and well-posed regions. These regions are distinguished in the figure by
the bold line which has the value 0 in the well-posed region and the value 0.1 in
the ill-posed region. The ill-posed regions around the rarefaction wave on the layers
interface reflect the areas where the velocities of upper and lower layers differ; for
more explanation check the comments to Fig. 3 below or (17).

In Fig. 3 we show a problem for which we have not obtained agreement between
the one-layer and two-layer models. The problem has the initial data . = 0.65,
uy = 0.7 (this corresponds to case 1 from [2]) and the figure is at time ¢ = 20. In
this problem we have used 1000 points on the interval x € (—20, 20) with the CFL
number C,,,, 0.35 for LFAD2 method, 0.2 for LWLF2 method, and 0.5 for CNLF1F8
method with 0.2 for LF substeps. All three methods have produced results which
are very close and which are shown by dashed lines in the figure. There is a big
disagreement between the upper surface z, of the two-layer model and the surface
z; of the one-layer model on the downstream side. Actually the downstream shock of
the one-layer model is bracketed by two downstream shocks of the two-layer model.
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FIG. 3. Comparison of heights of two-layer and one-layer shallow water models for the problem
with b, = 0.65, uy = 0.7 at time ¢ = 20 showing the disagreement of the two-layer model with the one-
layer model. The bold line distinguishes the well-posed (value 0) and ill-posed (value 0.1) regions.

The reason for this is that while the differential equations guarantee that initially
equal velocities will remain equal (if R = 1) if there is unique dependence on the
data for smooth solutions, as shown in Section 2.3, the difference equations using
the individual momenta as variables do not have this property. So we quickly get
into a true two-layer ill-posed situation, with an evolution that does not agree with
the single layer solution. The ill-posedness is caused by different velocities of both
layers; compare (17). There are two intervals of ill-posedness, in the first one u; >
u,, in the second one u; < u, and u; = u, around x =~ 12.5.

Instead of using the two-layer model with (10)—(11) we tried the alternative
formulation (12) and (13) (mass equations (8)—(9) remain the same). This model
produced the single layer solution for very long times without any sign of instability.
However, in a genuinely two-layer problem such as that in Fig. 4 below, a different,
albeit similar, structure is obtained. As indicated earlier, we do not at the moment
have any reason to choose one over the other, although surely some kind of viscosity
argument will eventually settle the issue. We will stick to the individual layer
momenta formulation for now. However, if one could be certain that no shocks
will develop then the alternative formulation might be a better choice.

5.4.2. Different density in each layer. In this section we present a comparison
with results of [8]. We use again the initial conditions (22), here with n = 2 and
the initial heights z9 = 1, z9 = 2 and velocities u{ = u3 = u, as in [8]. The density
ratio R = p,/p; is 0.8 also as in [8].

Figure 4 shows the time evolution (at times ¢t = 15, 60) for the problem with
b. = 0.8, uy = 0.4, which is the problem 15 from [8], calculated by the LFAD?2,
LWLF4, and CNLF1F8 methods. This problem is well-posed everywhere. The
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FIG.4. Comparison of heights for two-layer shallow water model of LFAD2, LWLF4, and CNLF1F8
methods for the problem with b, = 0.8, u, = 0.4, R = 0.8 at times ¢t = 15, 60.

computations have been done on the interval x € (—20, 20) with 1000 cells and
we have again used C,,.x 0.7 for LF and LW time steps and 2 for CN time steps.
The structure of the shocks and rarefaction waves correspond to the Fig. 10 of [8].
Note that the downstream moving shock on the upper surface and on the interface
(at t = 60) is better resolved by the LWLF4 or CNLF1F8 method than by the
LFAD2 method.

Figure 5 shows the time evolution (at times ¢ = 15, 30, 100) for the problem with
b. = 1.2, uy = 0.4, which is the problem 36 from [8], calculated by the LFAD?2,
LWLF4, and CNLF1F8 methods. In this problem there appear both ill-posed and
well-posed regions. These regions are distinguished in the figure by the bold line
which has the value 0 in the well-posed region and the value 0.1 in the ill-posed
region. The ill-posed region lies between the shock standing on the downstream
side of the bump and the shock travelling downstream. The computations have
been done on the interval x € (=20, 20) with 2000 cells and we have used Cy,.x
0.35 for LF method, 0.2 for LW method, and 0.5 for CN method with 0.2 for LF
time substeps. More cells are needed to resolve the small dip on the interface
standing around x = 1.2. The structure of the shocks and rarefaction waves corre-
sponds to Fig. 8 of [8]. Note that the value of the interface height at the left-hand
end of the bump z,(—2) is around 1.43, as predicted by analytical estimates in Table
1 of [8] while the Lax—Wendroff method with artificial viscosity gave in [8] this
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FIG.5. Comparison of heights for two-layer shallow water model of LFAD2, LWLF4, and CNLF1F8
methods for the problem with b, = 1.2, uy = 0.4, R = 0.8 at times ¢ = 15, 30, 100. The bold line
distinguishes the well-posed (value 0) and ill-posed (value 0.1) regions.

value 1.22. This applies also to other cases. We have to note that in some cases
our results in some regions do not correspond to schematic drawings presented in
[8] which, however, were not claimed to be precise but rather representative.

5.5. Comparison of Schemes for Shallow Water

We have used three families of difference schemes LFAD(W)n, LWLFn, and
CNLFnFm with varying parameters W, n, m (see Section 4.1) and varying maximal
CFL number C,,,, (see Section 5.2). From our experience the reasonable values of
these parameters for the LFAD(W)n methods are W € (0.5, 1), 1 = n = 4,
Cuax € (0.2, 0.9), for LWLFn methods 2 = n = 8, Cp.c € (0.2, 0.9), and for
CNLFnFm methods 1 = n = 8,4 = m = 16, Cpax € (0.5, 3) (note that this Cpay
is for the CN step, for the LF step it has to be less than one). For most problems
good results are obtained with LFAD2 (Cp.c = 0.7), LWLF4 (Cpa = 0.7), and
CNLF1F8 (Cyax = 2 for CN step and Cy,,x = 0.5 for LF step) methods. As might
be expected LWLF and CNLF schemes resolve shocks better than LFAD schemes
(see Fig. 4). As is well known the anti-diffusion might introduce staircase behavior
in some regions of smooth solution. The same applies to the filter, especially if it
is used too often. Being implicit the CNLF schemes are generally slower, even with
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FIG. 6. Comparison of heights z; for one-layer GN semi-Lagrangian code with our one-layer GN
code.

greater CFL limit, than explicit LFAD and LWLF schemes. A generalization of
the LWLF scheme to two dimensions has proved to work well [26].

5.6. One-Layer Green—Naghdi

As the first check of the code we have used a solitary wave solution (32) [5] of
one-layer Green—Naghdi. We have obtained very good agreement between the
calculated numerical solution and the exact solitary solution.

5.6.1. Comparison with a semi-Lagrangian code. Here we compare our code
with the semi-Lagrangian (SL) code for the Green—Naghdi equations [2], where
six cases are studied. The bottom profile is given by (26). The initial conditions
(22) with n = 1 are given by z{ = 1, uf = uy.

We have obtained reasonably good agreement in all six cases presented in [2].
As an example we present in Fig. 6 the comparison for case 1 from [2] for which
uy = 0.7, b, = 0.65. This computation has been done on the interval x € (—40, 40)
with 2000 cells and C,, = 0.8. As can be seen in the figure there is a slight
disagreement in the speed of the downstream high frequency, high amplitude waves.

5.6.2. Comparison with a steady solution of the Euler equations. In [25] the
steady state solutions of the Euler equations are obtained by a boundary integral
formulation. The bottom profile is given by (25). The initial conditions (22) and
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FIG.7. Comparison of heights for steady state solution obtained by the boundary integral formulation
and our one-layer GN code.

the boundary conditions (23) with n = 1 are used again. In Fig. 7 we present a
comparison of the study state solution obtained from our Green—Naghdi code
(BEN) and the one from Fig. 3 in [25] for the case z§ = 1, u} = 1/V2, b. = 0.036.
This computation has been done on the interval x € (—80, 80) with 2000 cells and
Ciax = 1.6. The wavelength of GN downstream standing waves is greater than that
of the boundary integral formulation and their amplitude is smaller. We also do
not have steady upstream waves, our upstream profile is flat. However, we do not
know to what extent this discrepancy is due to the boundary conditions or the
Green—-Naghdi approximation itself.

5.7. Two-Layer Green—Naghdi

In all the two-layer Green—Naghdi tests we use the bottom profile (26). The
initial conditions are given by (22) and boundary conditions by (23) with n = 2.

When we set R = 0 and keep the interface constant and flat, then the soliton
solution of single-layer Green—Naghdi (32) described in Appendix B is the solution
of the two-layer Green—Naghdi for the upper layer. For R = 0 the height of the
interface z;(x, ¢) is independent of space and time when either the bottom is flat
or the initial velocity of lower layer is zero. Of course, R = 0 means that the density
of the upper layer is zero which does not make real physical sense. However, this
analytical solution has served as a starting point for checking numerical codes for
this complicated system.

5.7.1. Comparison with one-layer Green—Naghdi. Both single-layer and two-
layer Green—Naghdi models are approximations of the full-dimensional Euler equa-
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FIG. 8. Comparison of heights for GN one- and two-layer codes.

tions. Here we compare these two models on passive layer solutions with constant
density which have been discussed in Section 2.4.

The comparison of our one- and two-layer Green—Naghdi codes for case 3 from
[2] with

=05, %=1, u{=u=1, R=1, b.=02

is shown in Fig. 8. This computation has been done on the interval x € (—40, 40)
with 2000 cells and C,,,x = 5. Initially equal velocities of the layers remain close
and the results agree nicely for the height of the upper surface.

However, for some other configurations we are unable to calculate with two-
layer GN codes long enough; the instability breaking the computation appears quite
early. As an example we present in Fig. 9 the computation for the configuration
used in Fig. 6, with

29=0825, z29=1, wd=ud=07 R=1, b.=065. 27)

The downstream wave in the two-layer solution stays at around x = 3 and its
maximum becomes very sharp, which breaks further computation. We present
results of both ad-hoc and BEN codes. As can be seen the instability in the BEN
results is just starting at + = 6. Maximums of the downstream waves which are
sharper than those of single-layer GN results have appeared also in other cases.
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FIG. 9. Comparison of heights for GN one- and two-layer codes with instability.

5.7.2. Regularization by dissipation. 'The instability in the example with parame-
ters (27) presented in Fig. 9 can be regularized by fourth-order dissipation. Of
course, the question is how much dissipation should be added, i.e. how to choose
v. In Fig. 10 we present the results of the ad-hoc scheme with dissipation coefficients
v = 0.01, 0.0025 (for » = 0.001 the computation is broken by instability around ¢ =
10) and results of the BEN scheme with v = 0.1, 0.025 (for v = 0.025 the computation
is broken by instability around ¢t = 17 and for » = 0.01 around ¢ = 7). Note that
for the BEN scheme more dissipation is needed which causes deformation of the
solution around the top of bump.

5.7.3. Comparison with an Euler code. The comparison of our 2-layer Green—
Naghdi code with an Euler code for case 3 from [2] with

z29=05, z28=1, u?=ul=1, R=1, b.=02,

is shown in Fig. 11. The interface between the layers is a streamline starting at
height 0.5 at the left boundary, obtained for us from the Euler code by Piotr
Smolarkiewicz and Balu Nadiga. Although the GN upstream waves are faster than
Euler ones we can again say that the results qualitatively agree.

5.7.4. Convergence test. We have performed several convergence tests by com-
puting with decreasing time and space grid intervals while keeping their ratio
constant. The convergence tests show in some cases reasonably good agreement of
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FIG. 10. Regularization of the instability of two-layer GN presented in Fig. 9 by fourth-order
dissipation done by ad-hoc (AH) and backward Euler Newton (BEN) schemes with different dissipation
coefficients v (BEN with » = 0.025 becomes unstable around ¢ = 17, so it does not appear in the plot
att = 18).

the inner and upper surface heights as the grids are refined while in other cases
the convergence is not achieved.
In Fig. 12 we present one such convergence test for initial/boundary data

z29=065 z8=1, u)=u=1, R=1, b.=03.

The test has been performed for three sucessive grid refinements with 1000, 2000,
and 10000 points on the interval x € (=50, 50) with the CFL number C,,,, = 2.5.

For finer grids a kind of wavelet is generated on the layers interface on the
downstream side of the bump. The wavelet speed is higher than the speed of
downstream waves. The amplitude of the wavelet grows until the interface touches
the upper surface which violates the model assumption of positive thicknesses of
both layers and causes an instability later. The presented data are from ad-hoc
code. We have tried the same problem with BEN code which produced a similar
wavelet and becomes unstable much sooner, as soon as the interface touches the
upper surface, e.g. with 2000 cells and Cy,,x = 5 around ¢ = 10.
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FIG. 11. Comparison of heights z;, z, of the two-layer Green—Naghdi (GN) code with an Euler
code for layers (0, 0.5) and (0.5, 1).

This instability is surely related to the ill-posedness of the two-layer Green—
Naghdi model. Similar instabilities have appeared also in some other two-layer
tests. The dissipation does not remove this wavelet behavior, it only decreases
its amplitude.

5.7.5. Numerical properties of codes. As shown in Section 3.4 the two-layer
Green—Naghdi model is ill-posed. The numerical examples show that in some cases
we do not obtain convergence as the grid is refined (see Fig. 12) and in others the
instability breaks down the computation rather early (see Fig. 9). Even for some
parameters the computation breaks just in its beginning in the first time steps.

A common feature of these problematic numerical results (without dissipation)
is their dependence on space and time steps Ax, At. Usually there exists an optimal
space step Ax and an optimal CFL number C,,, (which determines the adaptive
time step At as described in the Section 5.2) for which the result looks most promis-
ing, meaning in most cases that the computation can proceed without instability
up to the biggest time. For finer/coarser space grid or greater/less CFL number
the instability usually breaks the computation earlier. Figure 9 presents an example
of such optimally chosen steps (see the Table I).

The instabilities, for cases where they appear, can be avoided by regularizing the
model with a fourth-order dissipation, although the system of equations is then not
dissipative, only boundedly well-posed. At the suggestion of G. Browning we have
included a computation with these dissipative terms included (see Fig. 10). However,
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FIG. 12. Convergence test for two-layer Green—Naghdi with b, = 0.3 and interface at z{ = 0.65 at
times ¢t = 5, 10, 20.

even with the dissipation a problem with the layer thickness approaching zero and,
thus, violating the averaged model the assumption remains. What is said in the
previous paragraph is now extended by the dependence on the dissipation coefficient
v. If v is too small, instability is not avoided; if it is too large, it might deform
the solution.

5.8. Summary of Examples

The previous sections include a lot of examples using different continuous models,
different numerical methods, and different data. In Table I we present a summary
of all examples presented in all figures in this paper. The table includes the figure
number, model (e.g., SW1 is single-layer shallow water, GN2 is two-layer Green—
Naghdi), initial conditions (z9, uf for single layer problems and z9, z9, u}, u3 for two-
layer ones), height of the bump b, ratio of densities R = p,/p;, half-length of the
interval on which the problem has been solved A (solved for x € (—A, A), number
of cells, used numerical method (as described in Section 4), CFL limit C,,,, used
for the adaptive time step calculation (see Section 5.2) and a note, which includes
an abbreviation of cited paper (NMS is Nadiga—Margolin—Smolarkiewicz [2], HI
is Houghton-Isaacson [8], and BF is Belward—Forbes [25]) and the number of the
example from that paper solving the same problem.
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TABLE 1

Summary of Presented Example Computations
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0 0
71 ui
Fig. Model 23,23 ul, u b, R A Cells Method Crnax Note
1 SW1 1 0.7 0.65 — 40 2000 LFAD2 0.7 NMS 1
LWLF2 0.7
CNLF1F8 2/0.7
2 SW1 1 1 0.2 — 20 1000 LFAD2 0.7 NMS 3
SW2 05,1 1,1 1 LWLF2 0.7
CNLF1F8 2/0.7
3 SW1 1 0.7 0.65 — 20 1000 LFAD2 0.35 NMS 1
SW2 0.825,1 0.7,0.7 1 LWLF2 0.2
CNLF1F8 0.5/0.2
4 SW2 1,2 04,04 0.8 0.8 20 1000 LFAD2 0.7 HI 15
LWLF4 0.7
CNLF1F8 2/0.7
5 SW2 1,2 04,04 1.2 0.8 20 2000 LFAD2 0.35 HI 36
LWLF4 0.2
CNLF1F8 0.5/0.2
6 GN1 1 0.7 0.65 — 40 2000 BEN 0.8 NMS 1
7 GNI1 1 1\V2 0.056 — 80 2000 BEN 1.6 BF 3
8,11 GNI1 1 1 0.2 — 40 2000 BEN 5 NMS 3
GN2 05,1 1,1 1 AH 5
9 GN1 1 0.7 0.65 — 40 2000 BEN 0.8 NMS 1
GN2 0.825,1 0.7,0.7 1 1000 BEN 6
20 2000 AH 3
10 GN2 0.825,1 0.7,0.7 1 20 2000 AH, BEN 3 NMS 1
12 GN2 0.65, 1 1,1 0.3 1 50 1000-10000 AH 2.5

6. CONCLUSION

There are two very well known vertically averaged single-layer approximations
to the incompressible Euler equations: hyperbolic shallow water and dispersive
Green—Naghdi. We have presented multilayer extensions of these models, posed-
ness analysis for two-layer models, several finite difference schemes for their solution
and a selected set of numerical examples of one-layer and two-layer problems with
free surface.

The two-layer Green—Naghdi equations are ill-posed in both the rigid lid and
free surface cases. The more familiar two-layer shallow water equations are of
mixed type; that is, they are hyperbolic in some regions of state space but ill-posed
in others. Both of these facts were shown using a computer algebra system.

The two-layer Green—Naghdi equations are ill-posed so basically we use for them
the backward Euler finite difference scheme which in the presented examples proved
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to be stable enough to allow solution of this ill-posed problem, at least for some
typical parameters. We have used two modifications of the nonlinear backward
Euler, namely one with full Newton linearization and the other with ad-hoc lineariza-
tion. The situation is further complicated by the extreme complexity of the equa-
tions, but this part of the difficulty was overcome by the use of automatic code
generation software. Fortran code solving the implicit difference equations was
created in this way and applied to several problems of flow over a bump. As far
as we know this is the first attempt to solve two-layer Green—Naghdi equations.
We showed that in one case in which there is a purely passive inner surface the
one-layer and two-layer results agree on the top surface height, while the inner
surface height agrees qualitatively with the corresponding streamline from an Euler
equation calculation. On several examples we have shown difficulties arising during
numerical solution of this model. Pure instabilities originating in the ill-posedness
of the model can be avoided by introducing the fourth-order dissipation into the
system. However, dissipation regularizes the problem only boundedly and even
with dissipation one cannot achieve convergence in all cases. Further, the thickness
of a fluid layer can, during the computation, approach zero which violates the
assumption of the vertically averaged model.

Two-layer shallow water offers a different challenge that was first addressed in
the 1970 paper [8]. Apart from the possible ill-posed region of state space there is
also the difficulty of the appearance of shock waves in a system that is not in
conservation form. Less serious but still troublesome is the fact that in a hyperbolic
region the wave speeds are not known in a simple form, making it difficult to use
numerical methods relying on an eigenvector expansion. We have proposed some
simple explicit and implicit composite schemes that we tested on single-layer prob-
lems where they showed excellent resolution of the discontinuous and smooth parts
of the solution. Here, as with Green—Naghdi, we included in our examples two
problems with a passive second layer. In one case we found agreement for the top
surface height, but in another this was not so for there it appeared that a shock in
the single-layer model split into two shocks in the two-layer model. We suggest as
the reason for this the fact that the two-layer difference equations in momentum
variables do not maintain initially equal velocities and thus quickly get into the ill-
posed region. It remains an open question as to which formulation of two-layer
shallow water equations should be used.

APPENDIX A: DERIVATION OF THE GREEN-NAGHDI EQUATIONS

The derivation starts with the Euler equations in each layer i,

Uy +wi; =0,
pi(wi + wintye + win;) = —pi + F;, (28)

pi(Wi + u;wy + wiwy) = —pi. — gpi,
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for
Zi-1 = < = Zis l = 17 veey 1,

where u;(x, z, 1), w;(x, z, t) are horizontal and vertical velocities in the ith layer.
The quantities F; include various forcing terms, but are taken to be zero.

The boundary conditions (in z) involve total derivatives (2) of the heights z;.
The boundary conditions are

dizi=wi(z =z) (29)
and
dizioy = wi(z = z;-9). (30)
At the top surface z = z,, we will pose either the rigid lid condition
z, = const, w, =0,
or the free surface condition
dnzp = wa, pn = 0.

Finally, the pressure is assumed continuous at the interfaces z = z;,i = 1, ...,n — 1.
Now we suppose that the horizontal velocities u; are independent of z. For the
vertical velocities we set

w;=d;z;q — (Z - Zi—l)uix-

Then the incompressibility condition (28) and boundary condition (30) are satisfied.
The other boundary condition (29) is equivalent to the mass conservation equations,

dihi + h,—u,-x = 0, i= 1, ey N

Note that the vertical component of velocity is also discontinuous. The condition
on the jump in velocity across the interface, (-), is

Wz = (W).
Now consider the layer z;,-; < z < z;. Let
qi(s) = fsa,-wl-dz,
where
d;if = dif + wif..
Now, using the mass conservation equation d;w; can be rewritten:

— T~ Zi-1
d;w; = dfz;-1 — — d; [(z; — zim1)ual.
Zi — Zi-1
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Then,
2
5 — 8%i-1
qi(s) = sdiz;y — ————d; [(z; — zi-1)unl- (31)
Zi T Zi-1

Then integrating the vertical momentum equation from a point in the ith layer to
the upper surface of that layer gives

pi(z) = 73(x, y, 1) + pilgi(zi) — q:(z) + g(z: — 2)],

where 7, is the pressure at the interface. This is well defined by the assumption
that the pressure is continuous at the interfaces.

The horizontal momentum equations are then obtained by integration across
each layer, that is,

; 1 N
(zi — zi-)diu; + f (qi(z)) — qi(2)edz + (zi — 2i-1)82ic = — . (zi = 2i-1)%%,
i—1 [

1

evaluating the integral results in the multiple layer momentum equations (3).

APPENDIX B: SOLITON SOLUTION OF SINGLE-LAYER GREEN-NAGHDI

The equations (1) (with n = 1) and (7) with flat bottom, i.e. ho(x) = zo(x) = 0,
have the solitary wave solution [5]

z15(x, 1) =1 + (z,, — 1)sech? [ / <1 - %) (x — \/z_mt)],

e = Ve (1- )

le(x’ t)

W

(32)

where z,, is the maximal height of solitary wave. The unperturbed height of this
upper surface is z; = 1.
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